Tempered Langevin diffusions and algorithms
نویسنده
چکیده
We consider a class of Langevin diffusions with state-dependent volatility. The volatility of the diffusion is chosen so as to make the stationary distribution of the diffusion with respect to its natural clock, a heated version of the stationary density of interest. The motivation behind this construction is the desire to construct uniformly ergodic diffusions with required stationary densities. Discrete time algorithms constructed by Hastings accept reject mechanisms are constructed from discretisations of the algorithms, and the properties of these algorithms are investigated.
منابع مشابه
Ergodicity of Strong Markov Processes
We derive sufficient conditions for subgeometric f -ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial f -ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on R...
متن کاملOptimal scaling of discrete approximations to Langevin diffusions
We consider the optimal scaling problem for proposal distributions in Hastings-Metropolis algorithms derived from Langevin diffusions. We prove an asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm can be characterised by its overall acceptance rate, independently of the target distribution. The asymptotically optimal acceptance rate is 0.574. We show that...
متن کاملFractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
In this paper we introduce a Langevin-type model of subdiffusion with tempered α-stable waiting times. We consider the case of space-dependent external force fields. The model displays subdiffusive behavior for small times and it converges to standard Gaussian diffusion for large time scales. We derive general properties of tempered anomalous diffusion from the theory of tempered α-stable proce...
متن کاملLangevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations*
We describe algorithms for estimating a given measure p known up to a constant of proportionality, based on a large class of diffusions (extending the Langevin model) for which p is invariant. We show that under weak conditions one can choose from this class in such a way that the diffusions converge at exponential rate to p, and one can even ensure that convergence is independent of the starti...
متن کاملFractional Langevin Monte Carlo: Exploring Levy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
Along with the recent advances in scalable Markov Chain Monte Carlo methods, sampling techniques that are based on Langevin diffusions have started receiving increasing attention. These so called Langevin Monte Carlo (LMC) methods are based on diffusions driven by a Brownian motion, which gives rise to Gaussian proposal distributions in the resulting algorithms. Even though these approaches hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002